3 resultados para undercarboxylated osteocalcin

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Summary : The purpose of this study was to examine if the reduction in glucose post-exercise is mediated by undercarboxylated osteocalcin (unOC). Obese men were randomly assigned to do aerobic or power exercises. The change in unOC levels was correlated with the change in glucose levels post-exercise. The reduction in glucose post-acute exercise may be partly related to increased unOC.

Introduction : Osteocalcin (OC) in its undercarboxylated (unOC) form may contribute to the regulation of glucose homeostasis. As exercise reduces serum glucose and improves insulin sensitivity in obese individuals and individuals with type 2 diabetes (T2DM), we hypothesised that this benefit was partly mediated by unOC.

Methods : Twenty-eight middle-aged (52.4 ± 1.2 years, mean ± SEM), obese (BMI = 32.1 ± 0.9 kg m−2) men were randomly assigned to do either 45 min of aerobic (cycling at 75% of VO2peak) or power (leg press at 75% of one repetition maximum plus jumping sequence) exercises. Blood samples were taken at baseline and up to 2 h post-exercise.

Results : At baseline, unOC was negatively correlated with glucose levels (r = −0.53, p = 0.003) and glycosylated haemoglobin (HbA1c) (r = −0.37, p = 0.035). Both aerobic and power exercises reduced serum glucose (from 7.4 ± 1.2 to 5.1 ± 0.5 mmol L−1, p = 0.01 and 8.5 ± 1.2 to 6.0 ± 0.6 mmol L−1, p = 0.01, respectively). Aerobic exercise significantly increased OC, unOC and high-molecular-weight adiponectin, while power exercise had a limited effect on OC and unOC. Overall, those with higher baseline glucose and HbA1c had greater reductions in glucose levels after exercise (r = −0.46, p = 0.013 and r = −0.43, p = 0.019, respectively). In a sub-group of obese people with T2DM, the percentage change in unOC levels was correlated with the percentage change in glucose levels post-exercise (r = −0.51, p = 0.038).

Conclusions : This study reports that the reduction in serum glucose post-acute exercise (especially aerobic exercise) may be partly related to increased unOC.r exercises. The change in unOC levels was correlated with the change in glucose levels post-exercise. The reduction in glucose post-acute exercise may be partly related to increased unOC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the association between undercarboxylated osteocalcin (ucOC) and lower-limb muscle strength in women over the age of 70years. The study also aims to confirm the association between bone turnover markers and heel ultrasound measures. A post-hoc analysis using data collected as part of a randomized placebo-controlled trial of vitamin D supplementation. An immunoassay was used to quantify total OC (tOC), with hydroxyapatite pre-treatment for ucOC. We determined associations of absolute and relative (ucOC/tOC; ucOC%) measures of ucOC with lower-limb muscle strength, heel ultrasound measures of speed of sound (SOS) and broadband ultrasound attenuation (BUA), bone turnover markers (BTMs; P1NP and CTx) and the acute phase protein alpha-1-antichymotrypsin (α-ACT). ucOC%, but not absolute ucOC concentration, was positively associated with hip flexor, hip abductor and quadriceps muscle strength (all p<0.05). ucOC% was negatively associated with α-ACT (β-coefficient=-0.24, p=0.02). tOC was positively associated with both P1NP and CTx (p<0.001). For each per unit increase in tOC (μg/L) there was a corresponding lower BUA, SOS and SI (β-coefficient = -0.28; -0.23 and -0.23, respectively; all p<0.04). In conclusion, ucOC% is positively associated with muscle strength and negatively associated with α-ACT. These data support a role for ucOC in musculoskeletal interactions in humans. Whilst tOC is associated with bone health, ucOC% and ucOC may also be linked to falls and fracture risk by influencing muscle function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anodization of titanium and its alloys, under controlled conditions, generates a nanotubular architecture on the material surface. The biological consequences of such changes are poorly understood, and therefore, we have analyzed the cellular and molecular responses of osteoblasts that were plated on nanotubular anodized surface of a titanium-zirconium (TiZr) alloy. Upon comparing these results with those obtained on acid etched and polished surfaces of the same alloy, we observed a significant increase in adhesion and proliferation of cells on anodized surfaces as compared to acid etched or polished surface. The expression of genes related to cell adhesion was high only on anodized TiZr, but that of genes related to osteoblast differentiation and osteocalcin protein and extracellular matrix secretion were higher on both anodized and acid etched surfaces. Examination of surface morphology, topography, roughness, surface area and wettability using scanning electron microscopy, atomic force microscopy, and contact angle goniometry, showed that higher surface area, hydrophilicity, and nanoscale roughness of nanotubular TiZr surfaces, which were generated specifically by the anodization process, could strongly enhance the adhesion and proliferation of osteoblasts. We propose that biological properties of known bioactive titanium alloys can be further enhanced by generating nanotubular surfaces using anodization.